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ABSTRACT
Optimal seeding in balanced knockout tournaments has only
been studied in very limited settings, for example, maxi-
mizing predictive power for up to 8 players using only the
relative ranking of the players (ordinal information). We
broaden the scope of the analysis along several dimensions:
tournaments of size up to 128, different player models, ordi-
nal as well as cardinal solutions, and two additional objective
functions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent Systems

General Terms
Economics, Algorithms, Experimentation

Keywords
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1. INTRODUCTION
Tournaments play a very important role in many different

social and commercial settings ranging from sporting events,
elections, and patent races, to multi-agent settings such as
choosing an agent most suitable for a task. In this paper,
we focus on the problem of determining an optimal seeding
for a balanced knockout tournament. This seemingly simple
question turns out to be surprisingly subtle and some of the
answers are counter-intuitive.

Over the past 40 years this space has only been partially
explored. Most of the previous work focused on maximiz-
ing the predictive power of the knockout tournaments for
up to 8 players while only using the relative rankings of the
players. We broaden the scope of the analysis along several
dimensions. First, we introduce a simple heuristic method
to make use of all available information (e.g., the winning
probabilities between the players), and show, perhaps un-
surprisingly, that this helps to improve the optimality of the
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solutions. We then extend the setting to tournaments with
more than 8 players, and show how the heuristic can really
make an impact in these settings.

The biggest challenge of going beyond 8 players is the
rapid growth of the number of distinct seedings as a function
of the number of players (specifically, O( n!

2n−1 )). To over-
come this challenge, we propose an easy-to-compute upper
bound of the predictive power. The upper bound is provably
correct, but what makes it particularly interesting is that
the values of the heuristic solution and the upper bound are
close to each other. This shows that both of them approxi-
mate well the optimal solution. Using these bounds allows
us to address tournaments of sizes up to 128 players.

In addition to the predictive power of the tournament, we
introduce two additional objective functions: maximizing
the expected value of the winner (which is different from
maximizing the probability that the strongest player will
win), and maximizing the revenue of the tournament, which
we define in a way that correlates to the players’ strengths
and competitiveness. For each of the objective functions,
we propose a corresponding upper bound, and analyze its
influence on the optimality of the solutions.

2. THE SETTING

2.1 Player Model
We focus on the monotonic model, which is popular and

well known in the literature. In this model, the players
are numbered from 1 to n in descending order of vi, their
unknown intrinsic strengths or abilities. Only the winning
probabilities between the players are known and they reflect
the ranking of the players.

Definition 1 (Monotonic Model). Given a set of n
players, the winning probabilities between the players form
a matrix P such that pij denotes the probability that player
i will win against player j, ∀(i �= j) : 1 ≤ i, j ≤ n, and P
satisfies the following constraints:
1. pij + pji = 1
2. pij ≤ pi(j+1)

2.2 Objective Functions
Let S be the set of all possible seeding sequences. Let

qr
S(i) be the probability that player i will win round r in

the tournament with the seeding S ∈ S (note that the final
round is log n). Let Qr

S(i) be the probability that i will reach
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round (r + 1), i.e., Qr
S(i) =

∏r
k=1 qk

S(i). We consider three
different objective functions:

1. MaxP– Maximizing the predictive power (i.e., the win-

ning probability of player 1): maxS∈S Qlog n
S (1)

2. MaxE– Maximizing the expected value of the winner:

max
S∈S

n∑
i=1

Qlog n
S (i) × vi

3. MaxR– Maximizing the expected revenue of a tournament.
We define the total revenue of a tournament as the sum of
the revenues of all matches:

max
S∈S

log n∑
r=1

∑
m=(i,j)∈Mr

Qr−1
S (i) × Qr−1

S (j) × Rev(m, r)

where Mr is the set of all possible matches that can happen
in round r, and Rev(m, r) is the revenue made by having
the match m in round r.

Here we make the following assumptions: (1) A match at
a later round should generate more revenue per ticket sale;
(2) A team with a higher value (strength, popularity) would
attract a bigger audience; (3) A more competitive match
would also attract more viewers. Based on these assump-
tions, we define the revenue of each match as the following:

Rev(m = (i, j), k) = k × [(vi + vj) − |Pij − Pji|]

2.3 Solution Types
We consider two types of seeding algorithms: Ordinal

vs. Cardinal. For ordinal solutions, the tournament orga-
nizer only uses the rankings of the players. Thus these
solutions are fixed seeding sequences that are applied for
any ordered set of players regardless of the actual winning
probabilities between them. We especially focus on two
ordinal seedings: Sn

1 = [1, n, (n − 1), (n − 2), ..., 2], and
Sn

2 = [...i, (n − i + 1), (n
2
− i + 1), (n

2
+ i), ...]. For exam-

ple, S8
1 = [1, 8, 7, 6, 5, 4, 3, 2], and S8

2 = [1, 8, 4, 5, 2, 7, 3, 6].
The seedings decided based on winning probabilities and

values of the players are called cardinal solutions. We pro-
vide a simple yet effective heuristic algorithm for finding
cardinal solutions, and compare these two types of solution.

3. EXPERIMENT SETUP
For each of the test cases, we generate the values of the

players and the winning probabilities between them so that
the monotonicity condition is satisfied. When n = 8, there
are only 315 different non-duplicate seedings. With this
number, we can easily find the optimal solution for any
objective function through exhaustive search and use it to
evaluate our ordinal and cardinal solutions. However, for
n ≥ 16, this is not possible since there are simply too many
seedings, e.g., for n = 16, there are 638 × 106 non-duplicate
seedings. In order to evaluate our solutions, we calculate the
upper bound for each of the objectives and then compare our
solutions to these bounds.

4. CARDINAL SOLUTIONS
Our heuristic algorithm is based on the Hill-Climbing ap-

proach. The algorithm attempts to improve a given seeding
by swapping every pairs of sub-tournament trees of height
k (∀k = {1, ..., log n}) to improve the objective value. For

each k, if there is a new seeding found with a better objec-
tive value, the whole process will be repeated for the current
k value. Otherwise the seeding with the best objective value
so far will be used for the next k value.

5. RESULTS
Here we give a list of results. Please see the full version

of the paper for more details.

5.1 Results for n = 8

When n = 8, we run 1M test cases for each of the ob-
jectives. For MaxP, S8

1 seems to be the best candidate. It
is optimal in 99.78% of the cases. We also prove that the
difference between the values of the seeding S8

1 and the op-
timal values is at most 1

8
and this is also the best worst-case

difference for all other ordinal seedings. For MaxE, surpris-
ingly, the sequence [1 8 6 7 2 5 3 4] instead of S8

2 has the
best chance of being optimal (40.07% of the cases). For the
MaxR objective, S8

2 is the best seeding with 22.60%.
Our cardinal solution achieves 100%, 94.99%, and 95.79%

optimal for MaxP, MaxE, and MaxR respectively. We can
make two observations: there is no ordinal solution that per-
forms well across all three objective functions; for MaxE and
MaxR, there is no seeding that achieves optimality with high
frequency either. Yet, for all of the objectives, our cardinal
solution almost always achieve optimality. This shows that
our algorithm is efficient and robust.

5.2 Results for n ≥ 16

For each of the objective functions, we provide a provably
correct upper bound of the optimal value. We then compare
our cardinal and ordinal solutions to this upper bound.

In Figure 1 we show a graph plotting the experimental
results for MaxP (the results for MaxE and MaxR are also
similar). Here we generate 100k tournaments of size n for
each n ∈ [16, 128]. The x-axis denotes the size of the tour-
nament, and the y-axis denotes the average percentage of
a particular solution when compared to the upper bound.
As n grows exponentially, the objective values of our cardi-
nal solution remain close to the values of the upper bound.
This implies that our upper bound is relatively tight, and
our cardinal solution is close to being optimal. Using both
of the upper bound and the cardinal solution allows us to
have a good approximation of the optimal values. With
larger values of n, our cardinal solution also shows a bigger
improvement over the ordinal solutions (on average at least
4% improvement). This justifies the extra complexity arises
from using the heuristic function.
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Figure 1: The average % of objective values of different

solutions vs. upper bound for MaxP over 100k tests
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